C114门户论坛百科APPEN| 举报 切换到宽版

亚星游戏官网

 找回密码
 注册

只需一步,快速开始

短信验证,便捷登录

搜索

军衔等级:

亚星游戏官网-yaxin222  二级通信军士

注册:2010-4-283
发表于 2024-11-1 22:39:43 |显示全部楼层

亚星游戏官网-yaxin222



强化学习(RL)对大模型复杂推理能力提升有关键作用,但其复杂的计算流程对训练和部署也带来了巨大挑战。近日,字节跳动豆包大模型团队与香港大学联合提出 HybridFlow。这是一个灵活高效的 RL/RLHF 框架,可显著提升训练吞吐量,降低开发和维护复杂度。实验结果表明,HybridFlow 在各种模型规模和 RL 算法下,训练吞吐量相比其他框架提升了 1.5 倍至 20 倍。

在大模型后训练(Post-Training)阶段引入 RL 方法,已成为提升模型质量和对齐人类偏好的重要手段。然而,随着模型规模的不断扩大,RL 算法在大模型训练中面临着灵活性和性能的双重挑战。传统的 RL/RLHF 系统在灵活性和效率方面存在不足,难以适应不断涌现的新算法需求,无法充分发挥大模型潜力。

据豆包大模型团队先容,HybridFlow 采用混合编程模型,将单控制器的灵活性与多控制器的高效性相结合,解耦了控制流和计算流。基于 Ray 的分布式编程、动态计算图、异构调度能力,通过封装单模型的分布式计算、统一模型间的数据切分,以及支撑异步 RL 控制流,HybridFlow 能够高效地实现和实行各种 RL 算法,复用计算模块和支撑不同的模型部署方式,提升了系统的灵活性和开发效率。

实验结果显示,无论 PPO 、ReMax 还是 Safe-RLHF 算法,HybridFlow 在所有模型规模下平均训练吞吐量均大幅领先于其他框架,提升幅度在 1.5 倍至 20 倍之间。随着 GPU 集群规模扩大,HybridFlow 吞吐量也获得良好扩展。这得益于其灵活的模型部署,充分利用硬件资源,实现高效并行计算。同时,HybridFlow 能够支撑多种分布式并行框架(Megatron-LM 、FSDP 、vLLM ),满足不同模型规模的计算需求。

随着 o1 模型诞生,大模型 Reasoning 能力和 RL 愈发受到业界关注。豆包大模型团队表示,将继续围绕相关场景进行探索和实验。目前,HybridFlow 研究论文已入选学术顶会 EuroSys 2025,代码也已对外开源。

HybridFlow开源链接:https://github.com/volcengine/veRL


来源:网易

举报本楼

您需要登录后才可以回帖 登录 | 注册 |

手机版|C114 ( 沪ICP备12002291号-1 )|联系大家 |网站地图  

GMT+8, 2024-11-5 12:27 , Processed in 0.115314 second(s), 16 queries , Gzip On.

Copyright © 1999-2023 C114 All Rights Reserved

Discuz Licensed

回顶部
XML 地图 | Sitemap 地图